

Conference: Congreso Interdisciplinario de Energías Renovables Mantenimiento Industrial - Mecatrónica e Informática

Booklets

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar

DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Análisis del comportamiento eléctrico en un compresor reciprocante hermético monofásico a la modificación de las variables termodinámicas en la refrigeración

Author: José Carlos, AGUILAR-ANASTACIO, Salvador, PÉREZ-LULE, Luis David, MUÑOZ-FLORES

Editorial label ECORFAN: 607-8534 BCIERMMI Control Number: 2018-03 BCIERMMI Classification (2018): 251018-0301 **Pages:** 21 **RNA:** 03-2010-032610115700-14

ECORFAN-México, S.C.		Holdings			
244 – 2 Itzopan Street		Mexico	Colombia	Guatemala	
La Florida, Ecatepec Municipality		Bolivia	Cameroon	Democratic	
Mexico State, 55120 Zipcode Phone: +52 1 55 6159 2296	www.ecorfan.org	Spain	FIG. I	Republic	
Skype: ecorfan-mexico.s.c.	www.ccoriamorg	Spain	El Salvador —	Керивііс	
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo	
Facebook: ECORFAN-México S. C.		Peru	D	Niconomic	
Twitter: @EcorfanC		- I el u	Paraguay	Nicaragua	

OBJETIVO GENERAL

Obtener un modelo matemático que demuestre la influencia del cambio de las temperaturas de refrigeración en el consumo eléctrico del compresor.

Objetivos Particulares

- 1.- Análisis termodinámico del sistema de refrigeración doméstico
- 2.- Cálculo de la demanda de potencia en función de las variables térmicas del sistema de refrigeración
- 3.- Cálculo de la potencia eléctrica
- 4.- Gráficas del comportamiento de la corriente eléctrica en función de la variación de la temperatura

Figura 1. Refrigeración Doméstica

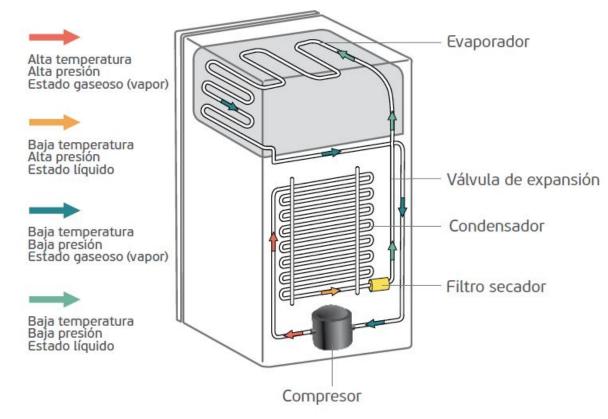


Figura 2. Elementos que componen un sistema de Refrigeración

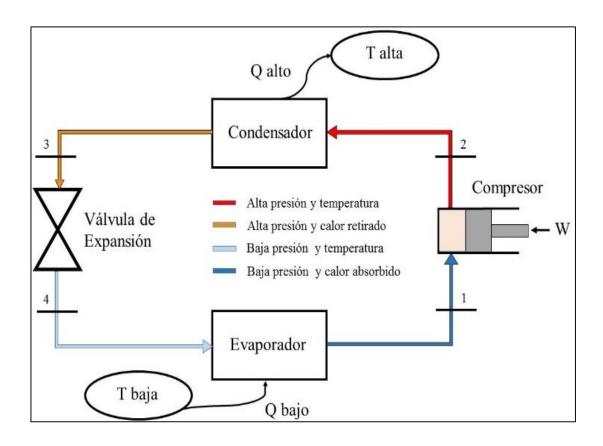


Figura 3. Ciclo de trabajo en el sistema de refrigeración

Figura 4. Partes principales del compresor reciprocante

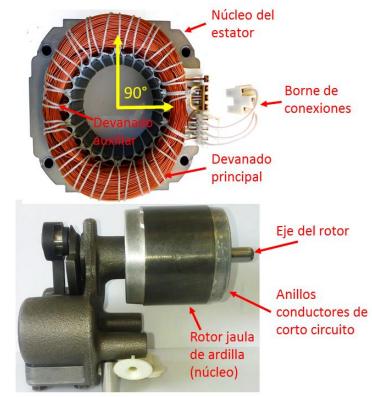
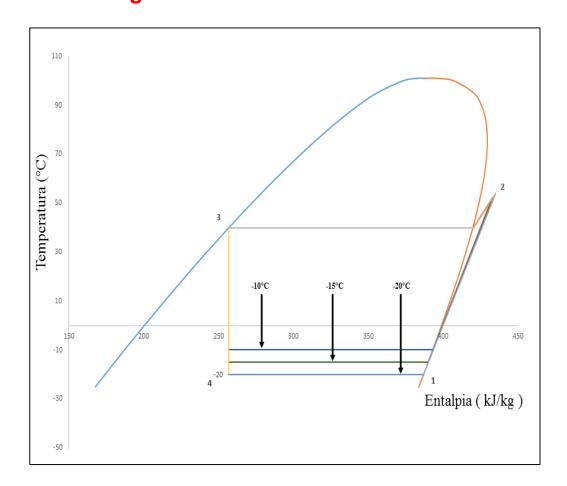



Figura 5. Partes principales del motor del compresor

Gráfica 1. Comportamiento Temperatura-Entalpía (T-h) del refrigerante HF-134a

Tabla 1. Propiedades termodinámicas de los cuatro estados del ciclo de refrigeración a -10°C en el evaporador

Estado	T (°C)	P (bar)	s (kJ/Kg°K)	h (kJ/Kg)	v (m³/kg)	Calidad (x)
1	-10	2.01	1.7341	392.9	0.0996	1
2	50.49	10.18	1.7485	431.36	0.0215	VSC
3	40	10.18	1.1912	256.6	0.0009	0
4	-10	2.01	1.2163	256.6	0.0343	0.34

Tabla 2. Propiedades termodinámicas de los cuatro estados del ciclo de refrigeración a -15°C en el evaporador

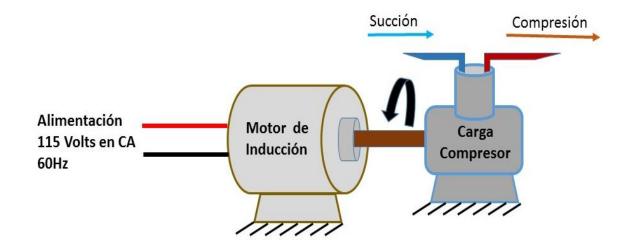
Estado	T (°C)	P (bar)	s (kJ/Kg°K)	h (kJ/Kg)	v (m³/kg)	Calidad (x)
1	-15	1.64	1.7379	389.8	0.1207	1
2	52.19	10.18	1.7541	433.17	0.0217	VSC
3	40	10.18	1.1912	256.6	0.0009	0
4	-15	1.64	1.2218	256.6	0.0445	0.36

Tabla 3. Propiedades termodinámicas de los cuatro estados del ciclo de refrigeración a -20°C en el evaporador

Estado	T (°C)	P (bar)	s (kJ/Kg°K)	h (kJ/Kg)	v (m³/kg)	Calidad (x)
1	-20	1.33	1.7422	386.8	0.1474	1
2	54.04	10.18	1.7601	435.14	0.0219	VSC
3	40	10.18	1.1912	256.6	0.0009	0
4	-20	1.33	1.2279	256.6	0.0578	0.39

La potencia mecánica generada por el compresor se obtiene:

$$w_c = (h_2 - h_1)\dot{m}$$


Tabla 4. Variación de la potencia del compresor en función de la temperatura de congelación

T (°C) Congelación en el Evaporador	Flujo másico (<i>ṁ</i>) (Kg/s)	(h ₂ -h ₁) (kJ/kg)	Wc (Watts)	СОР	
-10	1.127x10 ⁻³	38.46	43.37	3.5	
-15	1.153x10 ⁻³	43.37	50.00	3	
-20	1.180x10 ⁻³	48.34	57.00	2.7	

Potencia de Entrada = Potencia de Motor + Potencia de Carga

Figura 6. Representación del sistema motor-compresor

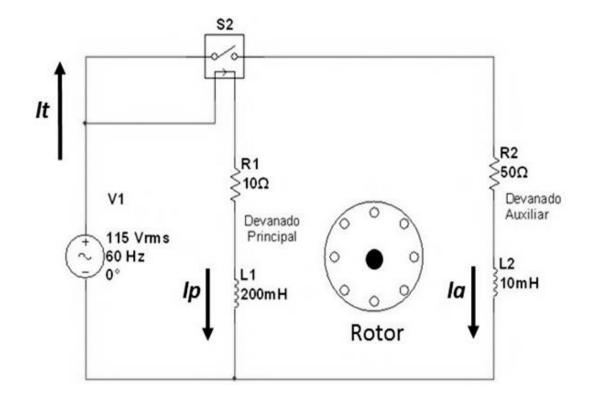


Figura 7. Representación del motor de inducción con alimentación.

Cálculo de la demanda de potencia eléctrica:

Aplicando la ecuación de la potencia total, compresor y motor:

$$P_{Entrada} = P_{Motor} + P_{Mec\acute{a}nica}$$

De otra forma:

$$V_{rms} \sqcup \theta \cdot I_{rms} \sqcup \alpha = \frac{V_{rms}^2 \sqcup \theta}{Z_T} + \frac{P_M}{\eta}$$

Donde:

V_{rms} = voltaje efectivo de alimentación al compresor

I_{rms} = corriente efectiva que demanda el compresor

 $P_M = w_c$ potencia mecánica (carga térmica)

 η = 0.85 eficiencia del compresor

 θ = ángulo desfasado de voltaje

 α = ángulo desfasado de corriente

 Z_T = impedancia total de los devanados del motor.

Se despeja *Irms* de la ecuación de la potencia de entrada:

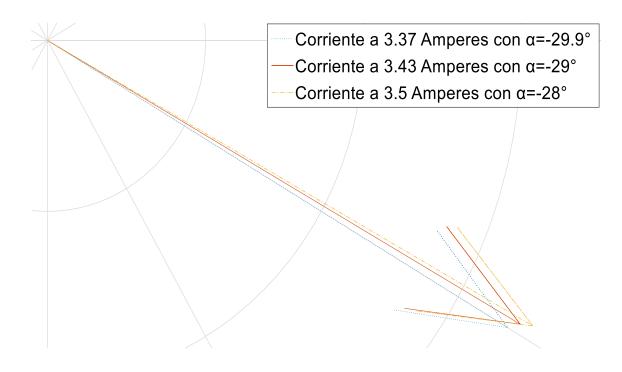
$$I_{rms} \perp \alpha = \frac{V_{rms}^2 \perp \theta \cdot \eta + Z_T P_M}{Z_T \eta V_{rms} \perp \theta}$$

Sustituyendo el valor de la potencia mecánica:

$$I_{rms} \perp \alpha = \frac{V_{rms}^2 \perp \theta \cdot \eta + Z_T \cdot [(h_2 - h_1) \cdot \dot{m}]}{Z_T \cdot \eta \cdot V_{rms} \perp \theta}$$

Congreso Interdisciplinario de Energías Renovables, Mantenimiento Industrial, Mecatrónica e Informática

Tabla 5. Demanda de corriente y potencia del compresor.


T (°C) Temperatura de Congelación	V _{rms} (Volts)	I _{rms} (Amperes)	P _{M Potencia de} compresión (Watts)	Ángulo de atraso (α)	P _T Potencia Total de Consumo (Watts)
-10	115	3.37	43.36	-29.9°	387.55
-15	115	3.41	50	-29.13°	392.15
-20	115	3.50	57	-28°	402.5

Componente en R

Figura 8. Representación vectorial de la corriente eléctrica

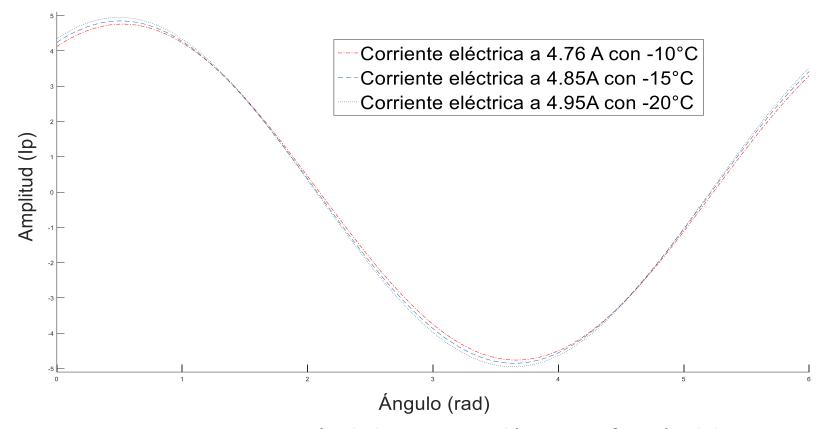


Figura 9. Representación de la corriente eléctrica en función del tiempo

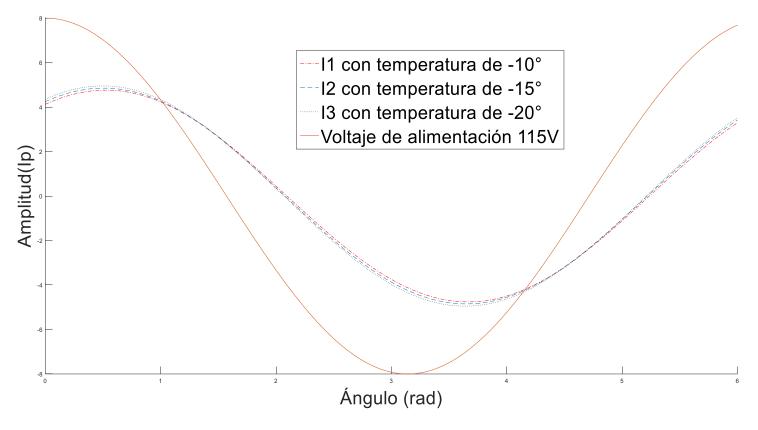


Figura 10. Representación de corriente y voltaje en el compresor en función del tiempo

CONCLUSIÓN

Existe un incremento de corriente a medida que la temperatura de congelación disminuye a consecuencia del incremento del desplazamiento entre los puntos 1 y 2 de la gráfica T-h, el resultado es una mayor demanda de trabajo para el compresor, lo que implica un incremento en el consumo eléctrico.

Ante esta situación es inevitable ajustar la temperatura de un refrigerador, dado que en todo el año existen diferencias de temperatura según la localidad y la estación del año.

REFERENCIAS

- 1. Joaquín, C. (2017). Balance Nacional de Energía 2016. México: Secretaría de Energía.
- 2. Ibrahim, D. (2010). Refrigeration systems and applications. United Kingdom: Wiley.
- 3. Pita, E. (2008). Principios y sistemas de Refrigeración. México: Limusa.
- 4. Shan, K. (2001). Handbook of Air Conditioning and Refrigeration. New York: Mc Graw Hill.
- 5. William, C. (2006). Tecnología de la Refrigeración y aire Acondicionado 1, Fundamentos. Madrid: Paraninfo.
- 6. Sáenz, F. (2002). Máquinas eléctricas. Madrid: Prentice Hall.
- 7. Chapman, S. (2012). Electric Machinery Fundamentals. New York: Mc Graw Hill.
- 8. Morán, M. (2005). Fundamentos de Termodinámica Técnica. Barcelona: Reverte.
- 9. Theodore, W. (2007). Máquinas Eléctricas y Sistemas de Potencia. México: Prentice Hall.
- 10. Alexander, CH. (2006). Fundamentos de Circuitos Eléctricos. CD de México: Mc Graw Hill.
- 11. Hayt, W. (2012). Análisis de Circuitos Eléctricos en Ingeniería. CD de México: Mc Graw Hill.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)